EE4350 Lab 3 Spring 2025

Current-Mirror Operational Amplifier Design

The current mirror op amp is shown below. This can be used as a standard operational amplifier in a feedback configuration though when it was introduced the primary focus was on using it in open-loop applications as an Operational Transconductance Amplifier (OTA).

Figure 1: Current Mirror Op Amp Schematic

- 1. Design this op amp in a 0.18µm process. In this design:
 - $V_{DD} = 1.65V$ and $V_{SS} = -1.65V$
 - The lengths of all devices should be 5xL_{min}
 - The mirror gains M_{35} and M_{46} should be 10
 - The mirror gain M₉₈ should be 1
 - The power dissipation should be 1mW
 - $V_{EB} = 100 \text{mV}$ for all devices

Note: In the .18 μ process we are working with there are two types of transistors. One type is comprised of low-threshold transistors and the other of high-threshold transistors. The total supply voltage for circuits using low-threshold transistors for this process is 1.8V and for circuits using high-threshold transistors it is 3.3V. Please use the high-threshold devices for this design.

Low threshold devices = nmos2v/pmos2v

High threshold devices = *nmos3v/pmos3v*

- 2. In Part 1 you were given several constraints in this design. Identify the number of degrees of freedom you have in the design of the current mirror op amp and a complete set of design variables for this design using the practical design variables. Determine the number of degrees of freedom you have left if you satisfy the constraints given in Part 1.
- 3. Assuming $C_L=20pF$, for this design, analytically determine the:
 - Differential voltage gain A_V(s)
 - Bandwidth (BW)
 - Gain-Bandwidth (GB)
 - Slew Rate (SR)
 - Output signal swing (assume a common-mode input V_{CM} of -200 mV)

Use the value of λ you obtained for this process as part of the Homework 4 assignment.

Note: If you solved HW 4 using low-threshold devices, you will need to re-run your λ extraction algorithm for the high-threshold devices.

- 4. Compare the results obtained in Part 3 with simulations in Cadence. Remember to use a C_L of 20pF.
- 5. In Cadence, connect the op amp in a unity gain buffer configuration. Use a C_L of 20pF. Using simulations, determine the following for this configuration:
 - What is the 3dB bandwidth (BW)?
 - What is the transient response to a 100mV step input with a V_{CM} of -200mV?
- 6. Using the small signal testbenches for the open loop configuration and unity gain buffer configuration from parts 4 and 5, determine the poles and zeros of the op amp. Plot the poles and zeros in the complex plane and mark the two dominant poles.

Note: Poles and zeros can be found using a "pz" analysis in Spectre. See Appendix I for details on running this simulation.

Appendix I: Spectre "pz" Analysis Instructions

Spectre "pz" analysis uses a small signal simulation to determine the poles and zeros of a circuit. Often when designing circuits, we are only interested in the low frequency poles and zeros. In real circuits, many poles and zeros exist though most of them are at very high frequencies.

Spectre "pz" analysis is useful for finding the actual values of the low frequency poles as well as for seeing the higher frequency poles and zeros. "pz" analysis is particularly useful for compensating op amps (talked about later in this class) or for understanding unexpected transfer function behavior from high frequency poles and zeros.

For running "pz" simulations, use the same testbench used for AC analysis of the small signal op amp parameters. The testbench used for determining the small signal open loop characteristics of the Lab 2 op amp is shown in Figure 2 below. This will be used again for determining the open loop poles and zeros.

Figure 2: Small Signal Open Loop Characteristics Test Bench Schematic

Open ADE Explorer. Create a new test (See Figure 3a) and select "pz" from the list (See Figure 3b).

Figure 3: a) Click to add another test b) Select "pz"

In the "pz" analysis setup box, click select next to "Positive Output Node". Select the output of the op amp on the testbench. Similarly, click select next to "Negative Output Node" and select your ground node. Lastly, next to "Input Voltage Source", click select. Select the voltage source that supplied the AC input (differential input) in your AC simulation. Do not choose any sweep variables. The setup window should now look similar to that in Figure 4.

≡	Choosin	ADE Explorer		×		
Analysis	🔾 tran	🔾 dc	🔾 ac	O noise		
	🔾 xf	sens	O dcmatch	 acmatch 		
	🔾 stb	🖲 pz	🔾 lf	🔾 sp		
	🔾 envlp	🔾 pss	🔾 pac	o pstb		
	O pnoise	pxf	🔾 psp	🔾 qpss		
	🔾 qpac	O qpnoise	🔾 qpxf	🔾 qpsp		
	🔾 hb	🔾 hbac	hbstb	hbnoise		
	🔾 hbsp	hbxf				
		Pole-Zero Ar	alysis			
Output						
voltage	Positiv	e Output Nod	le /outp	/output Select		
Voltage	Negati	ive Output No	de /gnd	! Se	lect	
Input Source						
input source	- Input'	Voltage Source	a 7/4	C ca	lact	
voitage	mpac	voltage source				
Sweep Varia	ble					
	(Component Ev	al Freq (Hz)	1		
Design \	(ariable					
Temper	ature					
	ature	tor				
Model P	arameter					
Woder P	arameter					

Figure 4: "pz" Analysis Completed Setup Window

Click "OK" and run the simulation. No outputs will plot. To see a list of all the poles and zeros, click on Results \rightarrow Print \rightarrow Pole-Zero Summary...

You can choose to print poles, zeros, or both. You can leave the other options as the default. A list of poles and zeros will be printed as shown in Figure 5.

		Results Display	Window	_ 0 ×
Window Expr	essions Info <u>H</u> elp			cādence
Poles(Hz)				
Pole_1 Pole_2 Pole_3	Real -9.228e+03 -2.209e+07 -6.969e+07	Imaginary 0.000e+00 0.000e+00 0.000e+00	Qfactor 5.000e-01 5.000e-01 5.000e-01	
Zeros(Hz)				
Zero_1 Zero_2 Zero_3	Real -5.270e+07 -5.270e+07 8.777e+08	Imaginary 5.769e+06 -5.769e+06 0.000e+00	Qfactor 5.030e-01 5.030e-01 -5.000e-01	
Network func	tion gain(magnitude)	= 2.207e-03		

Figure 5: Pole-Zero Summary Window

The poles and zeros can also be plotted in the complex frequency plane. To do so, in ADE Explorer, click Results \rightarrow Direct Plot \rightarrow Main Form.

In the window that pops up choose whether you want to plot the poles, zeros, or both and click "Plot" at the bottom of the window (See Figure 6).

≡	Direct	Plot Fo	rm	×
Plotting Mode Analysis	Append	-		
🖲 pz				
Function				
Poles And 2	eros 🔾 Po	oles		
Zeros				
Filter Out Max Fre	quency(Hz)	1.000	e+12	
Real Val	Je <=			
Add To Output	s		Plot	
> Press plot bu	tton on this	form		
			Close	Help

Figure 6: Pole-Zero Direct Plot Form

The plot will show the poles as crosses and the zeros as circles. The x-axis is the real frequency and the y-axis is the imaginary frequency (See Figure 7). Usually in our analysis, we determine the poles in rad/s. To compare analysis and simulation results, the necessary conversion must be made.

Markers can be places on the poles and zeros to see their values.

Figure 7: Pole-Zero Plot on the Complex Frequency Plane